26 research outputs found

    Computational neurogenetic modeling: a methodology to study gene interactions underlying neural oscillations

    Get PDF
    We present new results from Computational Neurogenetic Modeling to aid discoveries of complex gene interactions underlying oscillations in neural systems. Interactions of genes in neurons affect the dynamics of the whole neural network model through neuronal parameters, which change their values as a function of gene expression. Through optimization of the gene interaction network, initial gene/protein expression values and neuronal parameters, particular target states of the neural network operation can be achieved, and statistics about gene interaction matrix can be extracted. In such a way it is possible to model the role of genes and their interactions in different brain states and conditions. Experiments with human EEG data are presented as an illustration of this methodology and also, as a source for the discovery of unknown interactions between genes in relation to their impact on brain activity. Β© 2006 IEEE

    A computational neurogenetic model of a spiking neuron

    Get PDF
    The paper presents a novel, biologically plausible spiking neuronal model that includes a dynamic gene network. Interactions of genes in neurons affect the dynamics of the neurons and the whole network through neuronal parameters that change as a function of gene expression. The proposed model is used to build a spiking neural network (SNN) illustrated on a real EEC data case study problem. The paper also presents a novel computational approach to brain neural network modeling that integrates dynamic gene networks with a neural network model. Interaction of genes in neurons affects the dynamics of the whole neural network through neuronal parameters, which are no longer constant, but change as a function of gene expression. Through optimization of the gene interaction network, initial gene/protein expression values and ANN parameters, particular target states of the neural network operation can be achieved, and statistics about gene intercation matrix can be extracted. It is illustrated by means of a simple neurogenetic model of a spiking neural network (SNN). The behavior of SNN is evaluated by means of the local field potential, thus making it possible to attempt modeling the role of genes in different brain states, where EEC data is available to test the model. We use standard signal processing techniques like FFT to evaluate the SNN output to compare it with real human EEC data. Β© 2005 IEEE

    Retuning of Inferior Colliculus Neurons Following Spiral Ganglion Lesions: A Single-Neuron Model of Converging Inputs

    Get PDF
    Lesions of spiral ganglion cells, representing a restricted sector of the auditory nerve array, produce immediate changes in the frequency tuning of inferior colliculus (IC) neurons. There is a loss of excitation at the lesion frequencies, yet responses to adjacent frequencies remain intact and new regions of activity appear. This leads to immediate changes in tuning and in tonotopic progression. Similar effects are seen after different methods of peripheral damage and in auditory neurons in other nuclei. The mechanisms that underlie these postlesion changes are unknown, but the acute effects seen in IC strongly suggest the β€œunmasking” of latent inputs by the removal of inhibition. In this study, we explore computational models of single neurons with a convergence of excitatory and inhibitory inputs from a range of characteristic frequencies (CFs), which can simulate the narrow prelesion tuning of IC neurons, and account for the changes in CF tuning after a lesion. The models can reproduce the data if inputs are aligned relative to one another in a precise order along the dendrites of model IC neurons. Frequency tuning in these neurons approximates that seen physiologically. Removal of inputs representing a narrow range of frequencies leads to unmasking of previously subthreshold excitatory inputs, which causes changes in CF. Conversely, if all of the inputs converge at the same point on the cell body, receptive fields are broad and unmasking rarely results in CF changes. However, if the inhibition is tonic with no stimulus-driven component, then unmasking can still produce changes in CF

    The long journey to a Systems Biology of neuronal function

    Get PDF
    Computational neurobiology was born over half a century ago, and has since been consistently at the forefront of modelling in biology. The recent progress of computing power and distributed computing allows the building of models spanning several scales, from the synapse to the brain. Initially focused on electrical processes, the simulation of neuronal function now encompasses signalling pathways and ion diffusion. The flow of quantitative data generated by the "omics" approaches, alongside the progress of live imaging, allows the development of models that will also include gene regulatory networks, protein movements and cellular remodelling. A systems biology of brain functions and disorders can now be envisioned. As it did for the last half century, neuroscience can drive forward the field of systems biology

    Bidirectional Coupling between Astrocytes and Neurons Mediates Learning and Dynamic Coordination in the Brain: A Multiple Modeling Approach

    Get PDF
    In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model) which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a β€œlearning signal” to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity), and the modeling strategy may be extended to coordination among remote neuron clusters

    Markovian Architectural Bias of Recurrent Neural Networks

    No full text

    Computational neurogenetic modelling: gene networks within neural networks

    No full text
    This paper introduces a novel connectionist approach to neural network modelling that integrates dynamic gene networks within neurons with a neural network model. Interaction of genes in neurons affects the dynamics of the whole neural network. Through tuning the gene interaction network and the initial gene/protein expression values, different states of the neural network operation can be achieved. A generic computational neurogenetic model is introduced that implements this approach. It is illustrated by means of a simple neurogenetic model of a spiking neural network (SNN). Functioning of the SNN can be evaluated for instance by the field potentials, thus making it possible to attempt modelling the role of genes in different brain states such as epilepsy, schizophrenia, and other states, where EEG data is available to test the model predictions
    corecore